Name _____

Calculus II

When finished submit your answers at https://pryor.mathcs.wilkes.edu/submissions.

If you feel the answer is none of the choices given, submit no answer to the question.

- 1. Given $f(x) = \int \frac{e}{x^2} dx$ where $f(e) = \pi$, find C.
- 2. What would be the first step to find $f(x) = \int \frac{2x+5}{x^2+9} dx$?
- 3. Which function below is equivalent to $f(x) = \int_{x=0}^{x=4} \frac{dx}{1+\sqrt{x}}$ using an appropriate substitution of u for x?

a.
$$f(u) = \int_{u=0}^{u=2} u^2 + 1 \, du$$

c.
$$f(u) = 2 \int_{u=0}^{u=2} \frac{u}{u+1} du$$

b.
$$f(u) = \frac{1}{2} \int_{u=0}^{u=4} 1 + \frac{1}{1+u} du$$

d.
$$f(u) = \int_{u=0}^{u=2} \frac{u+1}{u} du$$

4. What is the area between $f(x)=4\cos x$ and $g(x)=\sec x$?

a.
$$\frac{\sqrt{3}}{2} - \ln \left| \frac{\sqrt{3}}{2} - \sqrt{3} \right|$$

c.
$$\frac{\sqrt{3}}{2}$$

b.
$$\ln \left| \frac{\sqrt{3}}{2} \right| - \frac{\sqrt{3}}{2}$$

c.
$$2\pi$$

$$\mathbf{d.} - \boldsymbol{\pi}$$

- **6.** How would you rewrite and simplify $\sqrt{e^{x+3}}$ in order to evaluate $f(x) = \int \sqrt{e^{x+3}} dx$?
- 7. The electric current in a certain inductor is given by i(t) = 8 $\int \frac{dt}{100 + t^2}$, what would be the current at t = 10 if i(0) = 10?
- **a.** $\frac{\pi}{40}$ **b.** $\frac{\pi}{4}$ **c.** $\frac{\pi}{400}$ **d.** $\frac{2\pi}{5}$
- **8.** Given the differential equation $\frac{dy}{dx} = \frac{x}{1+x^2}$, what is y(1) if $y(0) = \ln 2$?
 - **a.** $\frac{3}{2} \ln 2$
- **b.** $\ln 8$ **c.** $\frac{1}{2} \ln 2$ **d.** $\frac{3}{2}$
- 9. Find $\int_{x=\frac{\pi}{4}}^{x=\frac{3\pi}{4}} \frac{\sin 2x}{1-\cos^2 x} dx$ (Note: $\sin 2x = 2\sin x \cos x$)
 - **a.** ln 2

- **b.** $2\sqrt{2}$ **c.** -1
- **d.** $\frac{\sqrt{3}}{4}$
- 10. What is the area under $f(x) = \frac{\sin 2x}{1 \cos^2 x}$ from $x = \frac{\pi}{6}$ to $x = \frac{3\pi}{4}$?
 - **a.** ln 2

c. 3ln 2

b. $\frac{\sqrt{3}}{2}$

d. 2

